Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations.
نویسندگان
چکیده
Muscle fiber activity is the principal stimulus for increasing capillary perfusion during exercise. The control elements of perfusion, i.e., microvascular units (MVUs), supply clusters of muscle fibers, whereas the control elements of contraction, i.e., motor units, are composed of fibers widely scattered throughout muscle. The purpose of this study was to examine how the discordant spatial domains of MVUs and motor units could influence the proportion of open capillaries (designated as perfusion) throughout a muscle cross section. A computer model simulated the locations of perfused MVUs in response to the activation of up to 100 motor units in a muscle with 40,000 fibers and a cross-sectional area of 100 mm2. The simulation increased contraction intensity by progressive recruitment of motor units. For each step of motor unit recruitment, the percentage of active fibers and the number of perfused MVUs were determined for several conditions: 1) motor unit fibers widely dispersed and motor unit territories randomly located (which approximates healthy human muscle), 2) regionalized motor unit territories, 3) reversed recruitment order of motor units, 4) densely clustered motor unit fibers, and 5) increased size but decreased number of motor units. The simulations indicated that the widespread dispersion of motor unit fibers facilitates complete capillary (MVU) perfusion of muscle at low levels of activity. The efficacy by which muscle fiber activity induced perfusion was reduced 7- to 14-fold under conditions that decreased the dispersion of active fibers, increased the size of motor units, or reversed the sequence of motor unit recruitment. Such conditions are similar to those that arise in neuromuscular disorders, with aging, or during electrical stimulation of muscle, respectively.
منابع مشابه
Smart Grid Unit Commitment with Considerations for Pumped Storage Units Using Hybrid GA-Heuristic Optimization Algorithm
A host of technologies has been developed to achieve these aims of the smart grid. Some of these technologies include plug-in electric vehicle, demand response program, energy storage system and renewable distributed generation. However, the integration of the smart grid technologies in the power system operation studies such as economic emission unit commitment problem causes two major challen...
متن کاملOxygen delivery to skeletal muscle fibers: effects of microvascular unit structure and control mechanisms.
The number of perfused capillaries in skeletal muscle varies with muscle activation. With increasing activation, muscle fibers are recruited as motor units consisting of widely dispersed fibers, whereas capillaries are recruited as groups called microvascular units (MVUs) that supply several adjacent fibers. In this study, a theoretical model was used to examine the consequences of this spatial...
متن کاملMotor Unit Number Estimation in Normal and Parkinsonism Model of Medial Gastrocnemius Muscle in Rats
Motor units (MUs) reflect the function of the central nervous motor system. Thus, the estimated MU number is a good option to investigate the functional movement disorder in the Parkinson’s disease (PD). The purpose of this study was to compare the estimated MUs number in the medial gastrocnemius (MG) muscle of the normal rats and those with the Parkinsonism. The MG muscle of two age-matche...
متن کاملThe Changes of Leg Musclus Activities Following Increase of Gait Velocity
Purpose: Motor control evaluation and analysis of it"s specifications for diagnosis of neuromuscular diseases is new approach in clinical electroneurophysiology, that is based on the changes of electromyography responses and classic reflexes in this field. In this study quantitative power spectrum frequency used for changes of motor control strategies. Materials and Methods: Twenty five health...
متن کاملContribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study.
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 83 4 شماره
صفحات -
تاریخ انتشار 1997